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The qualitative equivalence between the Fourier reconstruction
(FR) algorithm and the filtered back projection (FBP) algorithm is
demonstrated when all the different phase errors that can occur in
FR are eliminated. The causes of phase errors are underlined and
methods to eliminate them are presented. The practical compar-
ison between FR and FBP has been evaluated on a numerical test
image and the results are reported, demonstrating the qualitative
equivalence. FR has the advantage of being very computationally
efficient. In fact, the time spent to obtain the FR image was 1/20
of that used to obtain the FBP image. Because of the computa-
tional efficiency of FR and the good quality of the results obtained,
an iterative version of FR has been used to implement the spec-
tral–spatial imaging (SSI) algorithm in the field of electron para-
magnetic resonance imaging (EPRI). An experimental example,
demonstrating its good performance, is reported. © 1998 Academic

Press

INTRODUCTION

Imaging from projections requires the application of a re-
construction algorithm (1–3). The numerical reconstruction
techniques used for this purpose can be grouped into two basic
classes: one in which the reconstruction is performed in the
signal space, and one in which it is performed in Fourier space.

Among the methods performed in signal space is filtered
back projection (FBP). Fourier reconstruction (FR) is the most
important method operating in Fourier space. It has been
shown that there is a complete theoretical equivalence between
FBP and FR (1, 3). In fact, both are interpreted by means of a
straightforward and interesting theorem referred to as the pro-
jection-slice theorem (1). For this reason, both the algorithms
belong to the group of so-called analytical algorithms.

The differences between these are of an operative kind and
arise from the behavior of the algorithms while finding an
approximate solution to the problem. The solution is necessar-
ily an approximation because of the limited number of projec-

tions, the limited number of sample points for each projection,
and the noise that affects the measured data.

FBP is used in a large number of applications (4–8), al-
though it is much slower than FR, which exploits the quickness
of the fast Fourier transform algorithm (9). The reason is that
FR is more sensitive to errors in calculation that can occur in
Fourier space: an error in Fourier space, in fact, will be
reflected on the whole image. The most serious effect could be
the introduction of phase errors on the image that imply the
loss of the Hermitian condition of its Fourier transform (sup-
posing that the unknown image is a real function). In this case,
the reconstructed image is a complex function and the calcu-
lation of its modulus is the only way to collect information,
both from the real and the imaginary parts. Zones in which the
image assumes negative values (i.e., less than zero), which we
refer to as negative information, are thus completely lost and
the algorithm fails when this information assumes a physical
relevance. In many applications, negative values have no phys-
ical relevance, and it is useful to apply the nonnegativity
constraint to improve the reconstruction quality. But, if we are
forced to use the modulus representation, it is impossible to
distinguish and eliminate erroneous negative information pro-
duced by the reconstruction technique. This limitation hinders
the use of an iterative version of FR when treating very noisy
data or missing-angle applications (4). In many areas, in which
reconstruction from projections is required, these conditions
frequently exist and FBP is commonly used instead.

Starting from the assumption of the theoretical equivalence
of the two methods, we show that, when all types of phase
errors are eliminated, FR performs as well as FBP, even in the
presence of negative information. The practical comparison
will be assessed by a numerical test image, showing the qual-
itative equivalence of the results. An iterative version of FR
has been used to implement the spectral–spatial imaging (SSI)
algorithm in the field of electron paramagnetic resonance im-
aging (EPRI) (4, 5).

The FR algorithm has been applied to reconstruct two-
dimensional (2D) images, from a set of one-dimensional (1D)
projections. Three-dimensional (3D) reconstruction is a natural
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extension of the 2D case (10–12). The algorithm has been
implemented using Matlab on a Pentium IBM-compatible
computer.

FOURIER RECONSTRUCTION TECHNIQUE

Let f( x, y) be a 2D function that represents the unknown
image. The integral off( x, y) through a lines perpendicular to
a directionf on the sample is called the ray sum. The whole set
of ray sums perpendicular to that direction constitutes the
projection (1, 13) of the image at thef angle, i.e.,

pf~r ! 5 E
2`

`

f~r , s!ds, [1]

wherer 5 x cosf 1 y sin f ands 5 x sin f 2 y cosf.
For each projectionpf(r ) collected in the space domain, the

1D FT is given by

Pf~v! 5 E
2`

`

pf~r !eivrdr, [2]

wheref 5 tan21(v2/v1) andv 5 (v1
2 1 v2

2)1/ 2.
The imagef( x, y) can be calculated by 2D inverse Fourier

transform,

f~ x, y! 5 E
2`

` E
2`

`

F~v1, v2!e
2i~v1x1v2y!dv1dv2, [3]

in which the coefficientsF(v1, v2) are evaluated using new
axes (r , s) rotated by an anglef with respect to the positive
x-axis,

F~v1, v2! 5 E
2`

` E
2`

`

f~r , s!eivrdrds, [4]

andv is defined as before.
By changing the order of integration, we see that thes-

integral is the projectionpf(r ), as given in [1], so that

F~v, f! 5 F~v1, v2! 5 E
2`

`

pf~r !eivrdr 5 Pf~v!, [5]

whereF(v, f) represents the FT off(x, y) in polar coordinates in
the frequency domain. Equation [5], known as the projection-slice
theorem (14), states that each Fourier coefficient of the density
function is equal to the corresponding Fourier coefficient of the

projection taken at the same angle. This equation gives a direct
operative method in order to derive a reconstruction algorithm,
called Fourier reconstruction (FR), that operates as follows:

(a) It creates the one-dimensional Fourier transform of each
projection.

(b) It places each 1D Fourier Transform on a 2D plane at the
proper angle and position.

(c) It uses the inverse 2D Fourier transform to obtain the
image.

In general, the exact reconstruction of the imagef( x, y), by
using Eq. [3], requires an infinite number of projections. More-
over, we are supposing thatPf(v) is a continuous function.
But, in experimental conditions, a finite numberL of projec-
tions is collected in polar coordinates, at angular increments
Df j. Moreover, for each projectionN data points are acquired
with spatial incrementsDr . In this case, the FR image can be
approximated by

f~ x, y! < O
k5 2N/ 2

N/ 2 O
J5 2N/ 2

N/ 2

F~vk, v j!e
2i~vkx1vjy!DvkDv j,

[6]

and the 1D Fourier transform ofpf(r ) has the form

Pf~v! < O
k5 2N/ 2

N/ 2

pf~r k!e
ivrkDr k. [7]

In these conditions, the FR algorithm has to be changed,
adding a new step, between (b) and (c), to include an interpo-
lation process in order to obtain a two-dimensional Cartesian
grid of Fourier coefficients.

During the implementation of this algorithm, two types of
errors can occur. One is strongly dependent on the accuracy of
the interpolation technique, on the number of projections, and
on the sampling interval of each projection. This type influ-
ences the image quality, but does not eliminate any intrinsic
characteristic of the image, such as being a real function.
Moreover, it has been demonstrated elsewhere (13, 14) that
these sorts of errors can be easily reduced by using more
accurate interpolation techniques.

The second type, the so called phase errors, is specific to FR
and can occur for different reasons, violating the Hermite
condition. In fact, phase errors are generated if not all of the
Fourier coefficients are correctly positioned inv-space, or
when their value is not correctly evaluated both for the real and
imaginary parts. Moreover, the condition that must hold is that
the zero-frequency (DC component) of each projection must be
placed at the same point at which the 2D Fourier transform
places the zero frequency of an image of the same dimensions.
This placement is strongly dependent on the implementation of
the FT algorithm and, when treating anN* N image,N being an
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even number, the FT algorithm could place the zero frequency
at one of four points: (N/ 2, N/ 2), (N/ 2 1 1, N/ 2), (N/ 2,
N/ 2 1 1) or (N/ 2 1 1, N/ 2 1 1), because the logical center
of the image does not correspond to a physical one. If this
correspondence is violated, phase errors can occur that transfer
relevant information to the imaginary part of the image. The
central point of the Fourier transform of the projections must
be at exactly the same position where the Fourier transform
algorithm would place the DC point.

NUMERICAL EXPERIMENT

The experiment reported in this section is intended to show
that FR can produce large phase errors in the reconstructed
image. However, it will show the practical equivalence be-
tween FR and FBP, once any sort of error in FR has been
eliminated.

For this purpose, the two techniques have been tested using
calculated data obtained by a two-level image, composed of an
“F” printed on a white circle (see Fig. 1A). A set of 128
projections, each sampled on 128 points, have been numeri-
cally calculated (without adding noise) to reconstruct 128*128
images. The images reconstructed by FR and FBP are shown in
Figs. 1B and 1C, respectively. Figure 2A shows the real part
and Fig. 2B the imaginary part of the image reconstructed by
FR, presenting phase errors due to only a one-point frequency
shift in the positioning of the Fourier coefficients of one
projection. The Hermite condition of the Fourier transform of
the image is violated.

The resulting image will be complex, and a consistent part of
it has been shifted to its imaginary part. In this condition, the
only possibility of using the information contained in the real
and imaginary parts is by taking the modulus of the image.
This results in the loss of the negative information in the
image. When the nonnegativity constraint (f( x, y) . 0) holds,
the modulus does not allow the zeroing of the points (x, y) in
which f( x, y) , 0, these being errors caused by the approx-
imation processes.

However, when FR uses correct positions for the Fourier
coefficients and ensures a correct interpolation process, it is
possible to obtain an image containing all the meaningful data
in its real part (see Fig. 2C, the same as Fig. 1A). In this case,
its imaginary part will be almost everywhere zero (see Fig. 2D)
and will show very few spurious values which are the residual
effects of numerical calculation errors intrinsic to the fast
Fourier transform algorithm (these values are of the order of
10225 and the image values are between zero and one). In this
case, it is possible to use the nonnegativity constraint to elim-
inate spurious negative oscillations (due to missing angle or
sampling), improving the image quality.

The comparison between Figs. 1B and 1C suggests the
following considerations:

1. The images are very similar and this fact is also demon-
strated by the values of the mean squared errors (MSE) defined
as in Ref.15 (MSEFR 5 0.005, MSEFBP 5 0.008).

2. The nonnegativity constraint can be used in each method.
3. The FR image has been obtained in 2 minutes; the FBP

image has been obtained in 40 minutes.

The large difference in computational performance is due to
the different operational behavior of the two methods. In fact,
if N is the number of projections used, the computational
complexity of FR grows asN2 log2 N, having supposed that
the number of projections is of the same order as the number
of the sampling points of each projection and of the image (1).
The computational complexity function of FBP, in the same
conditions, grows asN3. As an example, if we placeN 5 128,
FR will be about 18 times more computationally efficient than
FBP. It is important to emphasize that ifN is not a power of 2,
both algorithms have computational complexity that grows as
N3. In fact, FR uses the advantages of the FFT algorithm that
grows asN log2 N if N is a power of 2, andN2 otherwise (1).

The comparison has been done on the assumption that in-
terpolation errors are correctly treated and minimized. To make
the possibility of these errors negligible, we have used a greater
number of projections than necessary.

EXPERIMENTAL EPR APPLICATION:
SPECTRAL–SPATIAL IMAGING

The operative comparison between the two results has
shown the qualitative equivalence of the two methods, starting
from the effective advantage of FR with respect to FBP in
computational performance. We can now show, as an example,
the use of an iterative version of FR in an important application
of EPRI that uses missing angle reconstruction: SSI (4, 5).

In EPR spatial imaging, the goal is to map the spin density
distribution of an unknown object from a set of its projections
(16). The image is a map on a plane of different signal
intensities, coming from the observed paramagnetic agent.

Since the EPR spectrum is a function of the EPR signal
against the magnetic fieldH0, imaging is performed by adding
a linear field gradient,H(r ) 5 G z r , to the stationary magnetic
field, H0, required to observe the magnetic resonance phenom-
enon (17).

The EPR spectrum of an object recorded in the presence of
a field gradient along a directionr represents the projection
pf(r ) on r of the sample spin density and is given by

s~H! 5 E
2`

`

p~ z 2 H!t~H!dz. [8]

The functiont(H) represents the lineshape function and cor-
responds to the EPR spectrum measured in the absence of a
field gradient;p(H) describes the spatial distribution of the
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spin density. This expression means that the signal measured in
the presence of a field gradient is the convolution of the
intrinsic linewidth of the studied species with the spatial dis-
tribution of the sample.

In the case of SSI, the purpose is not only to obtain the spin

density information, but also to differentiate the spectral infor-
mation from localized parts of the sample.

The image obtained by a 2D SSI experiment, in fact,
represents the spread of EPR spectra along a spatial direc-
tion. The output of a SSI experiment shows a pseudo object

FIG. 1. Two-level sample image (A) composed of an “F” printed on a white cylinder. The maximum value of the image, white, corresponds to 1;
the minimum value, black, corresponds to 0. Correct Fourier reconstruction (B), 128*128, and filtered back projection reconstruction (C), 128*128, of
the sample image shown in (A). The set of projections used to obtain the images (B) and (C) was composed of 128 projections, each sampled on 128
points.
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whose dimensions areDH along the spectral axis andDS
along the spatial axis. In theH–Splane, the lines parallel to
the H-axis give the spectra at different positions along the
sample and the spin density of the sample is represented by
lines parallel toS. The acquisition of the EPR spectrum of
an object, at a given value of the field gradientG, represents

a projection of the pseudo object from an anglea. A field
gradient equal to zero will correspond toa 5 0° and an
infinite value of the field gradient toa 5 90°. Negative
values ofa are obtained by inverting the gradient sign. The
condition a 5 90° is experimentally impossible to achieve
because of the impossibility of using an infinitely large

FIG. 2. Fourier reconstruction, 128*128, of the sample image shown in Fig. 1A. Real part (A) and imaginary part (B) of the reconstruction with one-point
shift of the Fourier transform of one projection. Real part (C) and imaginary part (D) of the reconstruction with correct positioning of the Fourier coefficients
of all the projections. The image shown in (C) is the same as that reported in Fig. 1B.
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gradient value. The relation between field gradient and
observation anglea is given by

Ga 5 tan~a!DH/DS. [9]

The maximum observation angleamax is then fixed byDH,
DS and by the maximum achievable gradient intensityGmax.
This means that an interpolating method is necessary to esti-
mate the missing projections (due to the restrictedamax value).
This is possible using an iterative method (5).

The implementation of 2D spectral–spatial that uses FR can
be summarized as follows:

1. The projections are acquired at increasing gradient angles
up to the maximum allowed.

2. The initial values of the missing projections are set equal
to zero.

3. A Fourier reconstruction image is obtained.
4. The negative parts of the reconstructed image are set

equal to zero.
5. A new estimate of the missing projections is evaluated by

reprojection, at the appropriate angles, from the previous im-
age.

6. Steps 3, 4, and 5 are repeated until there is no further
improvement in the image.

It is necessary to use step 4 because if we do not make use
of any constraint to change the image structure, the application
of step 5 obviously gives a constant value at missing angles.
This type of information would not be useful in reducing the
artifacts from an image using the iterative process. In fact, a
projection that gives a constant contribution to the reconstruc-
tion of an image has the same effect as a projection that is zero
everywhere. Moreover, if we do not make use of any constraint
to change the image structure, after the first iteration of the
spectral–spatial algorithm the reprojection process would give
no change in future iterations at the missing angle projections.
The preceding algorithm is different from that given by Mal-
tempo et al. (5) because step 3 is implemented using FR
instead of FBP.

To show the equivalence of the two algorithms on experi-
mental data, we reconstructed L-band (1 GHz) EPR spectral–
spatial FR and FBP images of a phantom composed of two

FIG. 3. L-band Fourier (A) and filtered back projection (B) spectral–spatial images of a sample composed of two contiguous circular sample holders, 4.8
and 4.3 mm in diameter and 10 mm apart. The samples were filled with a nitroxide free-radical water solution in different concentrations, 1 mM the larger and
0.7 mM the smaller. The nitroxide had the typical three-line spectrum and 0.16 mT of linewidth. To obtain the images, 33 measured projections, 4 missing angles,
and 3 iterations of the algorithm were used. The maximum gradient value was 0.285 T/m.
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contiguous circular sample holders, 4.8 mm and 4.3 mm in
diameter and 10 mm apart. The sample holders were filled with
a nitroxide free-radical water solution in different concentra-
tions, 1 mM the larger and 0.7 mM the smaller. The free radical
used had the typical three-line spectrum of nitroxides and 0.16
mT of linewidth. To obtain the spectral–spatial images using
the two techniques we used 33 measured projections, 4 missing
angles, and a maximum gradient valueGmaxof 0.285 T/m. The
optimal number of iterations was 3 for both algorithms. The
images obtained with FR and FBP are shown in Figs. 3A and
3B, respectively. The images are the visualization of the ni-
troxide free-radical triplet, reproduced twice (one for each
sample tube) with different intensities, due to the different
concentrations of the solutions. The two images show that very
similar results are obtained by using the two techniques.

The experimental projections were collected at different
gradient values and the projections have differentS/N values.
The signal-to-noise ratio (S/N) of the experimental projections
was calculated as the ratio between the signal amplitude and
the standard deviation of the noise, on the integral of the
projections (18). The maximumS/N, referred to the projection
without gradient, was about 980 and the minimumS/N, cal-
culated on the projection with maximum gradient of 0.285
T/m, was about 35. We have also calculated theS/N of the two
images (image peak amplitude/standard deviation of noise)
reported in Fig. 3. The FR image has aS/N of 46 and the FBP
image has aS/N of 45. These results demonstrate that both
techniques are equally influenced by the noise present on the
data, as expected from their theoretical equivalence. Moreover,
for both algorithms three iterations were necessary to obtain
very similar spectral–spatial images. This fact indicates that
both techniques are also equally influenced by the missing-
angle artifacts.

DISCUSSION

In this paper we have shown the practical equivalence be-
tween FR and FBP. In fact, the numerical experiment demon-
strates that the results obtained by the two methods are very
similar if any source of phase error is removed by FR. In fact,
it is important to avoid phase errors in order to have the

opportunity of using FR in missing-angle applications, as in
any situation in which the nonnegativity constraint and an
iterative application of the reconstruction algorithm are re-
quired.

In these cases, the application of FR is recommended, be-
cause of its computational efficiency. The functionality of FR
has been demonstrated when applied to spectral–spatial EPR
imaging reconstruction. In this case, the iterative version of FR
has been used, and the image reported in Fig. 3 demonstrates
its functionality.
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